Noise-robust detection and tracking of salt domes in postmigrated volumes using texture, tensors, and subspace learning
نویسندگان
چکیده
The identification of salt-dome boundaries in migrated seismic data volumes is important for locating petroleum reservoirs. The presence of noise in the data makes computer-aided saltdome interpretation even more challenging. We have developed noise-robust algorithms that could label boundaries of salt domes effectively and efficiently. Our research is twofold. First, we used a texture-based gradient to accomplish salt-dome detection. We found that by using a dissimilarity measure based on the 2D discrete Fourier transform, the algorithm was capable of efficiently detecting salt-dome boundaries with accuracy. At the same time, our analysis determined that the proposed algorithm was robust to noise. Once the detection is performed for an initial 2D seismic section, we track the initial boundaries through the data volume to accomplish an efficient labeling process by avoiding the parameter tuning that would have been necessary if detection had been performed for every seismic section. The tracking process involves a tensor-based subspace learning process, in which we built texture tensors using patches from different seismic sections. To accommodate noise components with various levels in a texture tensor, we used noiseadjusted principal component analysis, so that principal components corresponding to greater signal-to-noise-ratio values might be selected for tracking. We validated our detection and tracking algorithms through experiments using seismic data sets acquired from the Netherlands offshore F3 block in the North Sea with very encouraging results.
منابع مشابه
Detection of Salt-dome Boundary Surfaces in Migrated Seismic Volumes Using Gradient of Textures
Salt domes, an important geological structure, are closely related to the formation of petroleum reservoirs. In many cases, no explicit strong reflector exists between a salt dome and neighboring geological structures. Therefore, interpreters commonly delineate the boundaries of salt domes by observing a change in texture content. To stimulate the visual interpretation process, we propose a nov...
متن کاملDesign of robust carrier tracking systems in high dynamic and high noise conditions, with emphasis on neuro-fuzzy controller
The robust carrier tracking is defined as the ability of a receiver to determine the phase and frequency of the input carrier signal in unusual conditions such as signal loss, input signal fading, high receiver dynamic, or other destructive effects of propagation. An implementation of tight tracking can be understood in terms of adopting a very narrow loop bandwidth that contradict with the req...
متن کاملSalt and Pepper Noise Removal using Pixon-based Segmentation and Adaptive Median Filter
Removing salt and pepper noise is an active research area in image processing. In this paper, a two-phase method is proposed for removing salt and pepper noise while preserving edges and fine details. In the first phase, noise candidate pixels are detected which are likely to be contaminated by noise. In the second phase, only noise candidate pixels are restored using adaptive median filter. In...
متن کاملA Novel Approach for Salt Dome Detection using A Dictionary-based Classifier
In this paper, we present a dictionary based classification approach for salt dome detection using texture based attributes. The proposed algorithm overcomes the drawbacks of existing texture attributes based salt dome detection techniques which are heavily dependent upon the relevance of attributes to the geological nature of salt domes and the number of attributes used for classification. The...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کامل